Organic Compounds Chapter 6 section 3

I. Carbon

Organic chemistry is the study of carbon compounds

- Most compounds that have carbon in them are organic (made by living things)
- Why Carbon?

> 6 electrons - 2 in first energy level and 4 in second ***these are shared with other elements to form covalent bonds

Bonds Carbon can make

II. Main Organic Molecules (4)

- Carbohydrates, Lipids, Proteins, and Nucleic Acids
- Some of these molecules are simple and some are complex
 - Monomers simple, small molecules used as "building blocks" to make large molecules Examples: glucose and amino acids
 - > Polymers complex, large molecules made by monomers

III. Making and Breaking Polymers

 Making polymers- water is removed between two monomers (Dehydration Synthesis)

 Breaking down polymers – water is added to break bond between monomers (Hydrolysis)

IV. Carbohydrates

- made of Carbon, Hydrogen (2) and Oxygen
- 1st choice of energy for the body
- Not stored in the body (converted to fat)

Include:

- Small sugar molecules in s drinks
- Long starch molecules in and potatoes

Monosaccharides: Called simple sugars

> Include glucose, fructose, & galactose

Glucose is found in sports drinks

Honey contains both glucose & fructose

Fructose is found in fruits

Galactose is called "milk sugar"

Disaccharides: A disaccharide is a polymer (2 sugars) They're made by joining two monosaccharides (dehydration)

Sucrose (table sugar)

Lactose (Milk Sugar)

Polysaccharides: Composed of many sugar monomers linked together
 Complex carbohydrates

Starch

V. Proteins

Made of carbon, hydrogen, oxygen and nitrogen

Polymers made of monomers called amino acids

> All proteins are made of 20 different amino acids linked in different orders

 Proteins are used to <u>build cells</u>, make <u>hormones & enzymes</u>

Primary Protein Structure

The primary structure is the specific sequence of amino acids in a protein

Four Types of Proteins

Storage

Structural

Contractile

Transport

Linking Amino Acids

- Cells link amino acids together to make proteins
- Peptide bonds form to hold the amino acids together

Denaturating Proteins Changes in temperature & pH can denature (unfold) a protein so it no longer works

Cooking denatures protein in eggs

Milk protein separates into curds & whey when it denatures

VI. Lipids

Made of Carbon, Hydrogen and oxygen

- Fats, oils, waxes and steriods
- Do NOT dissolve in water
- Used for energy storage, cell membranes, steroids and waterproofing (birds and plants)
- Triglyceride is the monomer

VII. Nucleic acids

- Made of Carbon, Hydrogen, oxygen, Nitrogen and Phosphorus
- Hereditary information
- Monomer is a nucleotide (sugar, nitrogen base and phosphate)
- DNA and RNA

VIII. Other Important Factors

Water is crucial for life

- > 3 uses: cooling, chemical bonds and removing waste
- Vitamins and Minerals
 - > Vitamins used for growth and tissue repair
 - Example: Vitamins A,B and C
 - > Minerals used to form different cell parts
 - Examples: Iron, Magnesium, Iodine and Sodium

Enzymes are an important class of catalysts (speed up chemical reactions) in living organisms

- > Mostly protein
- > Thousands of different kinds
- Each specific for a different chemical reaction (Lock and key)
 Enzymes are reusable (not used up in rxn)!

Enzymes, contd

- REQUIRED by all CHEMICAL PROCESSES in organisms (respiration, growth, photosynthesis, movement, etc.)
- They CONTROL the rate of METABOLIC (chemical reactions) in the body
- They lower ACTIVATION ENERGY (energy needed to start a reaction)
- They act on reactants called SUBSTRATES
- ACTIVE SITE is where the substrate TEMPORARILY fits into the active site during the metabolic reaction
- INHIBITORS like poisons can BLOCK ACTIVE SITES
- MANY have an -ASE ending
 - > Sucrose (table sugar) SUCRASE
 - > Lipids (fats & oils) LIPASE
 - > Proteins PROTEASES

- > AMYLASE in human saliva breaks down starch (amylose)
- PRODUCED NATURALLY by ALL organisms (bacteria, protists, fungi, plants, and animals)
- WITHOUT ENZYMES, OUR INTESTINES WOULD TAKE WEEKS TO DIGEST OUR FOOD, OUR MUSCLES, NERVES AND BONES WOULD NOT WORK PROPERLY, AND SOON DEATH WOULD RESULT!

Biochemical Reactions

Is a factors to affect biochemical reactions >pH- small changes in pH can disrupt cell processes >Temperature- gaining or losing heat energy

>Enzymes

Summary of Key Concepts

Macromolecules

Biological macromolecule	Function	Monomer	Examples
Carbohydrates	Dietary energy; storage; plant structure	H CH2OH H OH H CH2OH H CH2OH H CH2OH H CH2OH H CH2OH H CH2OH H CH2OH H CH2OH H CH2OH H CH2OH H CH2OH H CH2OH H CH2OH H CH2OH H CH2OH H CH2OH H CH2OH H CH2OH	Monosaccharides: glucose, fructose. dissaccharides: lactose, sucrose. Polysaccharides: starch, cellulose.
Lipids	Long-term energy storage (for fats); hormones (for steroids)	H-C-OH H-C-OH H-C-OH H-C-OH H-C-OH H-C-OH H-C-OH Glycerol Components of a fat molecule	Fats, oils, steroids

Macromolecules

Proteins	Enzymes, structure, storage, contraction, transport, etc.	Amino Carboxyl group group H H C CH H Side group Amino acid	Lactase (an enzyme), hemoglobin
Nucleic acids	Information storage	Phosphate Base A Sugar Nucleotide	DNA, RNA